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ABSTRACT

Interest in satellites, plasmas, rockets, ramjets
and reeatry from space has swelled the trickle of
eagineering research on radiative transport, motivated
primarily by an interest in furnaces, to a healthy
stream motivated by problems of ever-increasing
breadth. The rapid growth of the field has been
accompanied, as expected, by often uncoordinated,
sometimes overlapping or repetitive research on a
problem, and by the use of nomenclature and tools
reflecting the wide differences in background of the
investigators. Under such circumstances frequent
stock-taking is desirable. It is proposed here to
review some of the work of the recent past, but not
thoroughly; to comment on some of the problems and
report on work in progress, and to indicate
desirable fields of exploration. In particular,
emphasis will be put on problems of interaction of
radiation and other mechanisms, of gas radiation
with temperature gradients, of transition from flux
responsive to local conditions (diffusion) to action-at-
a-distance.

NOMENCLATURE

(not including terms adequately identified in text)
y: | Area of a surface, (lgth)?,
aa' Weighting factor, dimensionless. Prime

_indicates use of emissivity, no prime for
absorptivity. Temperature dependence
indicated by afT). Subscript n indicates
member of class.
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Characteristic dimension of a zone, {lgth).

Ratio, absorption coefficient to total
extinction (absorptien plus scatter)} co-
efficient, & /(k_+k_J; also exponent on
temperature.

A constant in equation 4, dimensions T5,

" Velocity of light.

Hemispherical black-body emissive power,
oT*, (energy/area time temp*), where T is
Iocal “molecular” temperature Prime

indicates gas. Subscripts G, GM, S: gb, :

mean-gas, surface.

The n* exponent:al integral of x, available
in tables.

Total interchange area between any two gas
zones, allowing for multiple scatter at all
gas zones and multiple reflection at alt sur-

faces, (length)?.
}

Direct interchange ‘area between 2 gas zones,

(1gth}®>. The quantity by which (E' —-E; )

is multiplied to give rate of direct energy
transfer by radiation.

Directed total-interchange area; GG after

allowing for effect of temperature on
radiating characteristics of that zone at root
of arrow, and after summing over the n gray
gas components present.

Like GG, except for reference to gas-surface
interchange.



g Like gg, except for reference to gas-surface
interchange.

é3 Like G—G‘, except for reference to gas-surface
interchange. :

K Absorpticn coefficient or total extinction
coefficient, (lgth)~'.

k Absorption coefficient based on partial pres-
sure, {atm ft)<'. kP = K,

L System dimension, (gth).

i Radiation mean free path, (lgth), = 1/K, The .

distarce a collimated beam travels during
attenuation to e~ ' of the original intensity.

(Nu)  Nusselt number, Am/A, where m is mean
hydraulic radius (2L for slabs). Subscripts
T for total, due to A, +AL

P Partial pressure of radiating components, as
PCOZ + HO? (atm).

3 Flux, (energy)/(arealtime), across plane of

particular orientation. Subseript r for radiant.

q/4 Flux per unit area, {energy)/(area)(time), as -
applied to surfaces.

3 Like E;_(_;, except for reference to surface-
surface interchange.

53 Like gg, except for reference to surface-
surface interchange.

-— -

S8 Like GG, except for reference to surface.
surface interchange.

r Temperature. Subscripts G (gas), § surface.

v Volume,

v Leaving-flux density (hemispherical) at sur-

face Ai, (energy)/(time)(area). Ineludes
" emission plus reflection. -

w! So defined that 4KW/ = total rate of energy
' emission plus scatter by V,, (energy)/(time)
(area). _
i¥:» ;W,'Dimensionless value of W, and W,’ when j
is the sole emitter in the system and the
temperature of j is such that its black-body
emissive power is 1,

Distance.

a Absorptivity, dimensionless. Subscript GS
refers to absorber and source of radiation in
sequence,

3,—,- The Kronecker delta, having value zero

except when { = j, when its value is 1.
€ Emissivity, dimenéic;nless. Subscripts G,
S, i refer to gas, surface, ith surface.

*For Non-gaseous emitters with a refractive indei n significantly
different from 1, £ is n2E,qc,y and an n? belongs inside thelast
Parenthesis.

A Themmal conductivity, (energy)/(time) (temp
diff) (Igth)

o Stefan-Boltzmann constant, (energy) /(area)
(time)(temp)*.
T As used by Konakov, the “radiating” tempe-

rature. Related to W by or* = W

L. RADIATIVE TRANSPORT AS A DIFFUSION
PROCESS ‘

Consider a unidirectional temperature field in an
emitting-absorbing medium, and consider an iso-

‘thermal plane located a great distance — measured in

radiation mean free paths — from bounding walls.
Since radiative flux depends. not on absolute values
of emissive power E(=oT*) but on differences, it is
clear that if the gradient in £ is constant for some
distance on either side of the plane of interest, the
radiative flux normal to the plane. must be propor-
tional to the gradient and to the mean free path i,
which is the reciprocal of the absorption coefficient
K. This concept must be many decades old.
Rosseland presented a derivation in 1931 [2].
Kellet in 1952 approximated the unidirectional flux
in glass [3], but without consideration of the 2z
distribution of direction of the radiant beams crossing
the principal plare. Czerny and Genzel [4] and later
others [8, 14, 15, 17] derived the relation

+ 4 - {166 T3\ dT '
== — grad E = — — 1)*
Trma =7 g rad (31( )d’x @

This attractive limiting law, which permits treat-
ment of radiative flux with a differential rather than
an integral equation, has begun to see much use and
some misuse; and its limits of applicability merit
consideration.

The validity of the coefficient 4/3K has been put
in question by three authors recently. Kolchenogova
and Shorin [19] have used the value 4/m?K, with m®
dependent on the spatial distribution of intensity and
nemerically 4, despite Shorin’s use of 4/3K in a
paper two years earlier [13]. More recently Konakov
[30] has presented a derivation which leads to the
value 1/K, in agreement with Kolchenogova and
Shorin. Konakov follows the established argument
that, analogous to conduction,

T =— D grad ¢
where D is the diffusivity of photons, proportional to

_ the product of their velocity € and mean free path [,

and ¢ is the radiation density of local space, 4E/c;
but for diffusivity he uses 1/4 cl.. The product D
grad ¢ is then [_ grad E or (1/K) grad E. From the
sketch he presents it appears that his factor of 1/4
must have been derived somewhat as follows:



FiG. 1 — THE DIFFUSION OF PHOTONS

Consider emission from a unit-volume lying in the

zero plane (see Fig. 1). Equal chance of emission in
all directions through 27 steradiand gives an average
distance traveled of :

(2, cos 0)dw/2m,
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w2 I

or f 27l sinf cos 8 40/2m = 25 .
(3

and since half the photons go the other way, [ /4.
Attention should have been focused, however, on all
photons passing through the base plane rather than on
those originating in a slab located at the base plane,
as a result of which different areas of the receiving
hemisphere would have a chance of receiving a photon
which is measured by cos 6. Perhaps the reverse
process, which in the limit should be the equivalent of
the forward one, is easier to visualize; the photons
passing through equal areas of emission from the hemi-
spherical surface toward the plane element have chances
of hitting it which are proportional to cos . Then the
mean forward distance traveled in one mean-free-path
of movement is

f(ls cos &) cosfdw /27 ,
21

arlz :
or f 2wl_sin 0 cos”6 d0/2m = (2/3)1,
0

Allowing for half the photons going the other way, the
diffusivity is ¢Z_/3 or ¢/3K, and multiplication by -
grad ¢ gives a result in agreement with (1)*.
Filippov's perhaps more satisfying derivation 171,
yielding the same result, sets up the flux equations
between parallel plates and takes the limit of interior
flux as the distance to the plates, measured in mean
free paths, becomes great.

Equation 1 is rigorous when grad E is constant.

. Whea its constancy does not extend for more than
three mean free paths on either side of the plane of
interest, use of (1) can produce large error. The
attractive simplicity of the relation has in the
author’s opinion caused it to be used unjustifiably.
Konakov, for example, has recently claimed that’

*Modification of the diffusion derivation to allow for refractive
index n: change ¢ to o/n and E to Eqqen®.
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condunction, convection and radiation in combination
can be handled, without integral equations, by
judicious use of the radiative diffusion process. He

" presents relations purporting to permit ready cal-

culation of combined radiation and conduction in
systéms consisting of gray parallel slabs, concentric
cylinders, and concentric spheres bounding a
stationary conducting and emitting-absorbing
‘medium; and récommends equations for use over the .

‘full range of separating distances between walls,

from zero up. Of the 154 equations presented, those
covering the case of radiative flux between parallel
plates were chosen, for easy comparisen with
available rigorous solutions: The relations given are:

( (ry~1,) th-r}
AK 1 2
Y xr =2 Tk -2
and
When - (T*-1M 3 equations
L>21, 7={ (T, - rJto——ioi_ | =F2
st 4 (1, T|)+0(1/E1)__(1/2) R in
and _  ORETRA
. (r“-T“)
MNir. -T 2 27
\ (s =T g7y =7 @)
When _ 4_Ts '
Leer, 3 kT, (Ho0) @
2 1 1
—+—=1
€& &

Here L is the wall spacing, A the thermal
conductivity, and 7, and 7, are intermediate
“radiation temperatures” which are eliminated in
solution for 7. Figure 2 gives the numerical

1+ Recommendation
\ of Kongkov { )+
KL<2
KL»2
0B
06
(9/A] st
E-E; .
04 —
| />\ o
Rigorous S~ yadx
0.2}— trom integral )
eqn. = —
0 - ‘
2 4 6 8 10

KL, no. of mean free paths between walls

FIG. 2 - RADIATIVE FLUX THROUGH GAS BETWEEN
HOT AND COLDWALLS. COMPARISON OF
KONAKOV'S RECOMMENDATIONS [3¢] WITH
RIGOROUS SOLUTION.



consequence of these relations, heavy lines, plottec’l
as qr/(E ~E,) vs KL, for the black-wall case with
ne conduction. For compar!son,‘ or contrast, the
rigorous solution to this problem is presented as
the light line. This is based on determination of the
temperature field ¢ (=(E . ~ E JN(E, - E,)) from

solution of the integral equatlon

Kx'o KL .
f ¢(y)dE2(y°—y)-f $(y)dE, (y—y,)

[+] Kzo

+E,(KL—y)=2é(y,),

and insertion into the flux equation

wa ., [ -
q 2 vaa _ 2'/J< é(yld E_ (y)+2E_(KL), where
E,-E, ‘

0

E,( )end E,( )are the second and third
exponential integrals.*

The relations given for cylinders and spheres
(L.c.) are of a construction similar to (2) and (3).
is clear that these relatmns are not generally valld
and the radiative flux is not representable by (1)
except where E extends with a constant gradient
for several mean free paths. Many problems of
practical interest lie in the range of 0.1 to 2 mean
free paths dimension in the direction of the gradient
in E,

A third line, dashed, appears on Fig. 2. It
represents direct use of (1) by evaluation of grad E
simply as (£, - E,)/L. I ultimately merges with the-
line representing the rigorous solution, and the two
differ from the heavy line, in the limit, in the ratio
4/3.

2. TRANSITION FROM DIFFUSION TO
ACTION-AT-A-DISTANCE

The above discussion leads to the conclusion that
radiative transport may be divided into three regimes,
quite different in the mathematical problems to which
they give rise.

(1) At extremely high values of optical depth the
radiation emitted from a volume element suffers such
rapid attenuation that the net rate of energy loss from
it is dependent on local conditions, — the gradient in
the emissive-power field. This diffusion process has
already been discussed in comnection with (1), It
was seen tobe mathematically equivalent to gaseous

“conduction except that T* is the potential function
rather than 7. If conduction and radiation are

*The reader is cautioned not to confuse Ep{ ) with Ep, the
emissive power of a surface.
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¢ombined in this regime, one of them can be
linearized in the other and they can then be added.

(2) At intermediate values of optical depth every
part of the system influénces every other part which
it can “see”; and by “seeing” is meant seeing either
directly of in the diffuse mirror of any non-black
walls or by scatter processes involving components
in the gas. There is “action-at-a-distance”, and
integral equations must be solved.

(3} At extremely low values of optical depth of
the system, measured in free paths, the radiation that
is emitted throughout the volume passes without at-
tenuation to an absorbing surface or through the
boundary of the system. Radiative flux at any plane,
representing the sum of the contributions of all
volumes and surfaces to it, varies with the position

" of the plane; and the gradient, either in temperature

or in black-body emissive power, is in general not
constant. But the net flux from any volume, by all
mechanisms, is dependent solely on its temperature
and conditions at its own boundaries, and action-at-
a-distance may be said to be absént, .
An example in which the three regimes stand out
clearly comes from consideration of the same slab
problem discussed above, the case of stagnant gas
in thermal equilibrium between hot and cold parallel
black walls. Although Fig. 2 presented results on the
problem of total interchange between walls, more
illumineting are the results on net interchange be-
tween the hot wall and the gas, or the gas and the
cold wall. Fig. 3 presents these, calculated by the
zoning technique. Substantially the whole of the
range of abscissa KL lies in regime 2 where use of
the integral equation is necessary. When KL is large,
however, the transport process approaches one of
diffusion, and (1) is applicable (dotted line marked
y ={4/3) x); this is regime 1. When KL is very
small, radiation from the gas slab passes unat-
tenuated to the walls; and since every element of
gas sees the two walls equally well, all elements are
at the same temperature corresponding to the
arithmetic mean emissive power (551 +Esz)/2. An

isothermal gas slab has an emissivity approaching
2KL in the limit as KL approaches zero [1].
Combination of these concepts gives

Es +E
qGési/A=( 9

This represents performance in regime 3, indicated
on the diagram by the dotted line marked y = x.
Plainly, regime 3 for this problem is in arange of KL
below 0.1.

Perhaps with enough cases studied over the range
of all 3 regimes to show how far the rigorous treat-
ment differs numerically from either of the two limit
approximations, the engineer will be in a position to

-E )2KL=(ES -E, )KL
2 1
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FIG. 3 -~ THE THREE REGIMES OF RADIATIVE TRANSFORT.
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ILLUSTRATION: GRAY GAS CONFINED BETWEEN

HOT AND COLD PARALI.EL BLACK WALLS. FLUXFROM GAS TO COLD WALL.

estimate answers to many of his problems adequately
by use of the relatively simple mathematics of regime
1 or 3. A note of pessimism must be added here,
however. The difference between real gases and gray
gases to be referred to in discussing (7), — the )
tendency of different absorption bands to dominate in
different ranges of PL — keeps the value K_ L from
changing in proportion to L; and one has difficulty in
moving a real-gas problem very far from the middle
range of Fig. 3. For the CO,-H,O system studied,
when P was kept constant at 0 25 atm and [ was
varied from 0.5 ft to 8 ft, K _ L varied only from 0.8
to 1.6.

3. INTERACTION OF RADIATION AND OTHER
TRANSPORT MECHANISMS

The interaction of radiation, convection, and*
conduction, — the modification of the temperature
field and sometimes of the flow field due solely to
one mechanism by the presence of the others, —is
in general a problem of considerable complexity.
Some of the work done in this area will be reviewed
briefly, and a relatively simple interaction problem
involving convection will be considered in some
detail.

Walther, Dorr, and Eller [10] have followed the
work of Genzel and others {4; 5, 6, 8, 9] on uni-

directional radiative flux through glass slabs with a
study of steady-state temperature profiles in a gray
slab with and without conduction. (Because of failure
to allow for the complicating effects of refractive
index at the slab boundaries, the method presented is
valid for gas slabs with refractive index near 1, but
somewhat in error for glass.) The finite difference

in temperature of a wall and of the medium touching
it, which generally characterizes radiation, was found
to disappear under the influence of conduction, as

_expected. (Discontinuity at the walls is of course
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also associated with condaction, but it is not
significant in a system many. conduction-mean-free-
paths thick. ‘The ratio /I, 4 is generally a
number of many orders of magnitude).

Gardon [22], in an important paper on heat fluxia
glass, allowed for the change in refractive index at
the boundaries, and for multiple reflection, and
included conduction.

Adrianov and Shorin [21] treated the case of a
gray gas flowing through a cylindrical black-walled
duct of uniform wall temperature. The gas was
assumed to enter ot a uniform temperature, and the
limiting cases of plug flow and parabolic velocity
profile were considered. This would appear to
constitute a study of interaction, at least to the
extent that the velocity profile should modify the
radiation field; and the work was labeled a “general



solution” of the problem of radiative transfer in the
flow of a uniform medium. But in the analysis each
gas element or shell was allowed to cool as though it
saw cold walls through a medium (the other shells)
with which it did not exchange heat, even though
allowance was made for attenuation of its emitted
energy by absorption in passage through the other
shells to the walls. This pair of assumptions has no
counterpart in reality. The effect of axial tempera-
ture gradients was alseo ignored, but that assumption
can have its physical counterpart in long systems.
Experiments on kot dust-laden combustion gases were
carried out on a 10 cm cylinder 80 cm long, presumably
to confirm the analysis of the radiation problem. A
rough calculation by the author indicates that the
empirical equation fitted to the data predicts total
heat transfer coéfficients (radiation plus convection)

. of the order of ter percent greater than those expected
from convection alone.

R. and M. Goulard [26] treated the case of a plane
layer of stagnant gas in thermal steady state between
a gray and a transparent wall, in application to air at
4000 to 7000K. Allowance was made for interaction
between conduction and radiation, but this interaction
was greatly simplified by the assumption (probably .
justifiable for the physical case of interest) that
emission from any gas layer passed tnattenuated to
the walls. The gas was assumed gray.

Among the researches on conductlon-radlatmn
interaction to. which the reader’s attention shouldbe
called are-the excellent works of Churchill and
associates [34] on absorption, scatter, and
conduction in powders and fibre mats, and the paper
" of Kadanoff [35] on radiation , scatter and conduction
in ablating bodies.

To generalize most readily about the
consequences of interaction between radiation
and conduction-convection one needs a simple
geometry. Probably the simplest is that of steady
flow of gas between infinite paraliel black plates
maintained at constant but different temperatures.
Consider such a system, at a point far enough from
entry to make the temperature and velocity profiles
invariant. Let the problem be to examine how
radiation and cenvection together modify the action
each would exert in the absence of the other, by
letting the gas be an emitter, — a real (non-gray) gas
at a temperature high enough to make radiation
important.

‘The net total-energy flux will be constant at all
planes parallel to the walls, and the net radiative
plus convective flux from hot wall to gas will equal
that from gas to cold wall; but the net wall-to-wall
flux will include an additional term due to radiation
alone.

To minimize the number of dimensionless

(/A =f\ (e Egy s
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parameters of the system, the following restrictions
will be imposed:

1. The difference in wall surface temperatures
T - T is small relative to their mean value

(T + T )/2 Because of the resulting skew-

symmetry of the temperature profile, the mean gas
temperature T, , will also equal (T + T, )/2

2. The gas total emlss:vtty and absorptlvzty are
representable by

€ = zEa;'(TGm-e'K -

Ogs =S a,(T)=c * ), Ta =1
Q

In words, emissivity is a welghted sum of the emis-

-K
sivities l—e " ofn dlfferent gray gases, weighted

in proportion to the factor @, which is a function of
gas temperature, In addition there is a clear-gas
(K=0) component with weighting factor a,, which
does not enter the formulation of ¢, but does aifect
rGO , the transmittance of the gas. The K’s are not a
function of temperature. Absorptivity, by the gas, of
radiation from a surface is built up the same way, the
weighting factors a_ being functions of the tempere-
ture of the emitting surface 77} andthe K’s being the
same as those used for emissivity.

These relations can sometimes be used with n
only 1; i.e., a mixture of one gray plus a clear gas is
assumed. Over a wider range of path lengths, twoor
three gray-gas terms may be needed. In a test on a
CO,H,0-N, mixture, n = 3 produced equations in
agreement, within 5%, with emissivity and
absorptivity data over a 2500-fold range of (pm + Py O)L
and over the temperature range 1500-3500R
{29, 33].

3. The temperature variation of emissivity is given

by
[a; (TG)] TS = [a,, (Ts)] Tt =C

The values @’and @ must be the same when I, =T,

from the second-law, and the assumption of a simple

power law must be adequate if the temperature range

is small. For CO,-H,0 it is quite satisfactory over

a 1000 R range. Plainly it can produce an absurdity
n

if pushed too far, since ?an > 1 has no physical

(4)

reality.

With these restrictions a radiation model law can
be obtained, giving the interchange between one wall
and the gas; in a form suitable for cornbmlng with
convection.

E, a,’rrc), a,(T,), a/a,,
a,/a,, KL, K /K,)



For a specific mixture the K_/K,’s are constant and
the ¢_/a,’s and a;/a,’s are approximately so, and

(o/ &) =f,Ue|(To W1 E gy f3 (K L),
[a'l (Ts)] Es f3 rKIL’ Gs)
Since this function must be of a form which goes to -

zero when E . \ =, and is proportional to Ecu
when E_=0, it may be written

(a/4),
Lo (Tgy) 1 gy = Loy (TI) E,

If in the above expression a: and @, are
substantially the same or if (E; /E)>» 1 or <1,

= (K,L ) ®

E; - E emerges as an argument in the denominator.
A more general result comes from use of restriction -
3 above {4). Use of it and replacement of E by oT*
changes the left side of the above relation to -

_ (q/4),
.Co [T"-b - T30

Making use of the small spread in absolute temperature,
one may write :

d(T&;" ~ T4t =0 A(T*P) =0 A [{T‘) ¢ ]

4-b 1 . 4—b Eg—E,
=0~ 7> AfT*) = . T%

Insertion of these substitutions into 5 gives
(q/4),

C 4-b

Th 4

©

% f, (K Lye,)
Egy-E.)

The CO, —H,0 mixture of present interest is fitted
moderately well by b=1. Since C/T®=C/T = q,
and €, = af, fKL), the denominator of the left side of
6) becom,es eg/f,(KL). The function f, may be
merged with f_ on the right of the equation, to give
finally

fg/4),

2fKLe) O

3
2 Eey—EJ)
The 3/4 factor has been retained as a reminder of
the effect of temperature on gas emissivity, and also
because the left side, as it stands, becomes 1 in the
limit as the walls become black and the gas becomes
perfectly stirred; and E ) then represents the uniform
gas temperature.

It using(7) for approximate correlation of the
effects of variation in system mean temperature and
in K, L, one should evaluate ¢, at the mean gas tem-
perature and at the mean beam length [1, 32] of

1.76 L. (Equation 7 canmnot be expected to correlate
performance of gases of different radiating charac-
teristics, but different gases couldbe bronght some-~
what closer together by use of some average KL
rather than K,L. K_, could forexample be obtained
_from solution of a pau' of equations, one for the full
mean beam length of interest and one for half that
value, expressing emissivity in Beer’s law form as

a single gray-plus-clear gas. When this is done,
K, L for the CO,-H,0 system is found to vary only
one-muth as much as K,L when the latter varies
from 1/8 to 2, dueto the changingrelative importance,
with change in L, of the different absorption coei-
ficients characterizing different parts of the spectrum
of CO,-H,0. This underlines the great difference
between gray and real gases.)

Radiation in the system of interest has been
reduced to an approximate relation among three
groups. Convention by itself conforms to the
relation

(9/4),
WT:‘?

(The term 2L follows the convention of using 4 times
the mean hydraulic radins.) Combined radiation and
convection will then be expressible in a six-group
function which, on replacing (E,— E_ )/(TGM—- T, )
by 4¢T? , becomes

(q/A) or (g/4); ot (9/4) pra1

= (Nu), = f(Pr, Re) ®

3
'—(TG"—T ) or— EG(ECM

3o¢, T
=1, é{ Lye,,Pr, Re,__‘ifﬁ_)

Use of the last of the ratios on the left and 2 com-

E,J

(9}

. bination of the first and last groups on the right to

form a new last group gives

(Q/A) al 3o € T
"g-"—"-L— N (10)
46 (Egy— Esl)

If there were no interaction between radiation and

convection the total flux could be expressed, by use

of (8) in the form
(¢/4) 1

=f, (K,L, €, P, Re,

A
(¢/4), o (Tou=Te YN,

= - +

3 - 8
256 (Ecy - Est) 256 (Ecu- Es1) 366 (Egy— Es!)

or
4

(Nu) 1

(¢/4); (a/4), -
TS

G "av

KX )

3 2KL
< <clEar=E.) cG(EGM—E) (3

XXE
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FIG. 4 — EFFECT OF OPTICAL DEPTH, MEASURED BY PL, ON THE TEMPERATURE PROFILE THROUGH
GAS FLOWING BETWEEN HOT AND-COLD BLACK WALLS. Reynolds Number = 5000; mean -

temperature = 2500R.

Discussion of (10} and (11) will await presentation of
some results of work in progress on this interaction
problem. Sarofim [33] has studied the case of flow
between parallel plates described above, with CO,-
H,0-N, at mean temperatures of 1500 R to 3500 R,
values of PGOZ+H20 of 1/8 to 2 ft atm, and Reynalds

Numbers of 5000 to 100,000. Pure convection
transport was first calculated from boundary-layer
theory to obtain the Nusselt number as a complex
function of Reynolds and Prandt! numbers

representable empirically by
2hL '
(Nu), = === 0.019(Pr)"”* (Re)*

or, for gas with Pr = 0.73, by
(Nu)_ =0.017 (Re)*®

This is in excellent agreement with experiment [7].
For studying the interaction between radiation and
convection, the mixed-gray-gas zone method described
below was used, with 54 zones varying 2000-fold in
thickness from boundary layer to. center.

Figure 4 illustrates the effect, at a Reynolds
number of 5000 and a mean temperature of 2500 R, of
changing the optical depth of the system, measured
by PCOZ+HZO L. The temperature field is expressed

" as arelation between gas temperature, measured

xxit

above the cold wall temperature as a base and
divided by the total drop across the walls, and the
fractional distance x/L from the cold wall.
Logarithmic scales are used on both coordinates to
emphasize what happens in the boundary layer.
The pure radiation curves indicate, as expected, that
increasing PL from 1/8 to 2 hides the wall gas more
effectively from the center, and its temperature drops.
(Temperature discontinuity at the wall is charac-
teristic of radiation). Convection alone produces the
expected constant gradient in the laminar sub-
layer, which here extends to x/L = 0.031. When
convection and radiation interact, — dotted lines, —
the boundary-layer temperature gradient is no longer
constant, since the total flux is constant but the
radiation flux varies and therefore AdT/dx must vary.
It isto be noted that toward the core the temperature
field of the combined processes approaches the pure
radiation field, at about 0.02 for PL = 2 and 0.1 for
PL =1/8. At Re = 5000, the combined-action
iemperature field always lies between the fields of
the separate processes or substantially coincides
with the radiation field in the core.

Figure 5 illustrates the effect of changing
Reynolds number on the temperature field, when PL
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FiG. 5 —~ EFFECT OF REYNOLD$ NUMBER ON THE TEMPERATURE PROFILE.
PL = 0.5 ft atm; Mean temperature = 2500R.

is held constant at 0.5 ft atm. The pure convection
field is given for Re = 5000 and 100,000 and the pure
radiation field is also shown. The field due to com-
bined action of radiation and convection shows an
interesting characteristic. At the higher Reynolds
pumber the temperature lies between its values for
‘pure radiation and pure convection in the core and
part way into the boundary layer, out to an %/L of
about 0.006; but near the wall the temperature under
the influence of both mechanisms is lower than for
radiation or convection alone. Radiation has been
increased by the high Reynolds number flattening
the core profile and thereby bringing hot gas nearer
the wall where the latter can “see” it better, and
convection has dropped; and the latter means a lower
MT/dx at the wall and a consequent downward dis-
placement of the curve on the log plot at its left
end. o
In this system the assumption of a small tempe-
rature difference across the walls prevents a shift in
the temperature field, anchored at its middle, from
affecting viscous or momentum forces or, in '
.consequence, the flow pattern. But the change in
temperature field does of course modify both the
radiation and the convection, in directions which
partly compensate. Convection forces the gas tem-
perature adjoining the wall to equal the wall tempe-

rature -and thereby tends to reduce the radiation, the
reduction beingless the higher the Reynolds number,
and finally changing sign. Radiation in modifying the
temperature profile near the wall tends to increase
the convection, the increase being less the higher
the Reynolds number, and finally changing sign. The
total flux is less than the sum of the pure convection
and pure radiation flux when PL and T are high, -
greater when PL and T are low; but the differenceis
small in the present example.

The total fluxhas been plotted in Fig. 6, using
the .groups that appear in (1) as coordinates and
parameters, except that the last group in the

" parenthesis is modified to its dimensional equivalent
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30éc Tg/)\.P, {atm ft)~ ' by inserting only the P from
K1 (= k‘P). The walls are assumed biack. The
calculated data points, not 'shown, lie on the solid-
line portions of the curves with a maximum deviation
indicated by the cross-hatched areas at the extreme
right, This indicates that the correlation groups
used, (10), have adequately allowed for the variation
in mean temperature from 1500 to 3500 R and the
corres ponding variation in emissivity. The dotted
lines extending to the right indicate the approach to
radiation-dominated flux which, at high enough value
of the abscissa 3a €e TE /AP, corresponds to constancy
of the ordinate (q/'4)mm1/(3/4'} €clEgy- E‘1) ata
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Influence of Re, P, and aeGTs/.P?t.

value indicated by thé solid lines through the centers
of the cross-hatched areas. The solid lines may be
extended to the left to lower values of 30¢,T3/AP
by assuming that radiation and convection act
independently in the convection-dominated region. On
that assumption (11) is applicable, written in the form

(f/d)y (9/4),
3 R ER
76 (g~ Es‘) \4 6 (Eou- EJ -
(Nu), 1
“2PL {30e, T3\’ 12
AP

where the subsecript indicates the value of the
bracket as 3o¢, T2 /P X approaches infinity. This
equation has been pioited as the dotted lines on the
left of the diagram. The left ends of the solid lines,
calculated with allowance for interaction, are seen
to fair gently into the dotted lines, indicating that
interaction had there become unimportant,
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Figure 6 illustrates well the shift from domination
by Reynolds number at low values of the group
30€, TS /AP to domination by radiation at high
values, with the transition occurring sooner the higher
the value of PL.

One regime on Fig. 6 is missing, the high-PL

. regime below the curves where, in the limit, radiation

becomes & diffusion process. That regime will now
be considered. Visnalize a temperature field, be-
tween the plates, associated with a particular
Reynolds number and Prandtl number. If the mean
free path for radiation is small compared to the
thickness of the laminar sublayer, i.e., i#f KL 3> 1,
where L is the wall spacing, and if the temperature
variation from wall to wall is small enough to make
T? nearly constant, then the gas acts in all respects
as though it has a total conductivity A equal to the
sum of conductive and radiative contributions.

160 T°
T™7e 3K

In consequence the temperature field is that which
comresponds to (Pr). = cu/Ay, and the relation

by

A\I/3
~0.019 Re)®?
(AT/zL) = (Ne)r (AT) (ke)

_ constitutes a true description of combined radiative

and convective flax. The only difficulty is that the
limit of applicability of this relation, — to problems
in which the laminar sublayer is of the minimum order
of 5 mean free paths thick, — puts it in the class of
interesting but not generally usefui relations.

What follows is some incomplete thinking
on whether the above limitation can be eased.
If the modification by the wall of the otherwise
straight-line temperature relation through the
conducting layer is too large to be ignored but

extends only partway (distance =, Fig. 7) into

the conduction layer, {distance x,} it should
be possible to vse the last relation above for
determining %, provided its use is coupled with

use of an artificial overall temperature differ-
ence, gas to wall, represented by

Tzns - Ts'l,a = Tgas - Ts| - A
A
=(T - -
( Eas Tsl) (1 T —T )
ges 5,
where T is the artificial or corrected wall

1,a

temperature,
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The problem is solved if A can be determined. It
appears that A should conform to the relation

A 40T
T, -T, =h 3k

1
The temperature profile near the wall under
conditions of combined radiation and eonduc-
tion, with the mean-free path lying well
within the conduction layer, has been deter-
mined by Van -der Held [41]; from his work
the value of A can be estimated. The results
would not be specific to the parallel plate problem
chosen for discussion. Rather, the limit of validity
of using A_, _in convection-type equations applicable
to any geometry would be greatly extended.

, slope at wall=f, (Pr, Re))

4. OTHER AREAS OF RESEARCH ON RADIATIVE
TRANSPORT

Space has prevented treatment, in any detail, of
many areas in which research on radiative transport
is needed, but a few of these will be considered
briefly. )

Isothermal Gas Masses. View-factors or exchange
areas are slowly becoming available for almost any
configuration of interest. Cartesian-coordinate
exchange-areas among cubes and squares [23] permits
build-up of any exchange factor desired. Cylindrical-
coordinate exchange areas among surface rings and
gas ring zones are available [25] for systems without

reentry surfaces. This incompleteness should be

remedied,. though it presents an enormous numerical

problem. Interchange areas with multiple reflection
have recently become available for the wall elements

- of an infinite cylinder containing no gas [40]. Mean

beam lengths are available for most shapes {12, 31,
32], but a few shapes perhaps require further study.
In particular, 2-dimensional exchange areas are
needed for gas-surface and gas-gas systems. Most
important in the area of isothermal gases is the
continning accumulation of adequate descriptions of
the radiating characteristics of gases and surfaces
of all kinds, and the presentation of results in forms
which are ready for the engineer to use. The work of
Penner [24] is outstanding in this area.

Gas-wall exchange, in Geometrically Simple
Systems, with Gradients in the Gas. Several relatively
simple geometries have been studied, a large number
remain. In addition to Adrianov and Shorin’s work
(l.c.), Takeuchi has studied plug-flow of real gases
cooling during flow in cylinders, with allowance for
axial gradients [38]; and Sarofim has allowed for
radial gradients, axial gradients and recirculation in
the flow of real gas through a cylinder fed at a peint
on its axis [33]. Usiskin and Sparrow [27] have cal-
culated the temperature field in a uniformly
distributed gray gaseous heat source confined be-
tween cold walls. Simpson [36, 37] has evaluated

‘the radiative flux to-the interior of a diathermanous
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droplet uniformly irradiated from without, including
allowance for refractive index, conduction, thermal
transierits, and surface vaporization. Hoffman [39]

has made somewhat similar studies en droplets.
Sparrow, Usiskin and Hubbard [28] have evaluated
radiative flux in gray gas confined between

concentric black spheres, covering the cases of cold
walls bounding a gaseous distribated heat source and
inert gas between hot and cold walls.

A class of problems in this area needing attention
and beginning to receive some is the evaluation of
the radiative flux field iz the vicinity of point and
line sources forming plumes or wedges of gas being
dilated and cooled by mixing with its surroundings.
Both driven jets and natural-convection jets merit
study

Furnaces. Industrial furnaces continué to be
designed for new chemical processing operations,
and methods are needed for predicting the effects of
desxgn variables on the flux distribution to the heat-
receiving surfaces. This is in many ways the most
sophisticated of the problems of radiation, combining
geometrical irregularity, difficulty predictabie
combustion pattéms, and flow ircegularities which
have so far largely defied rigorous analysis. The
best hope appears to be to use simpler systems, such
as axially fed cylinders, for rigorous calculation of
the effects of operating variables and, particalarly,



for determination of what simplifications are permis-
sible in the model without too great a loss of ac-
curacy in predicting performance. Progress along
these lines has been reported recently [32). Because
the. only method of approach to problems of this
degree of complexity appears to be the zoning method
and because that method can have important ap-
plication in the solution of many problems of inter-
action, it will be reviewed briefly in the next
section,

5. THE MIXED-GRAY-GAS ZONE METHOD

The two basic equations of radiative transport in
an absorbing medium are an expression of the
hemispherical flux throngh a unit area in terms of
directional intensity I, and an expression representing
how [ varies with distance. The first is

1" T/‘ [IA(dzr)] cosf dw

W=2T%

(13)

where qy* represents the monochromatic hemispherical
flux, in the + or — direction, per unit area; Iy (dir)

the monochromatic intensity, or energy per unit solid
angle per unit of area normal to the beam, with (dir)
to indicate it is in general a function of its direction;
@ the angle between the beam and the normal to the
surface on which ¢* is based; w the solid angle; and
2m + indicates integration over 27 steradians on the
side of the emergent flux, + for g*, — for ¢—. The
second relation, omitting allowance for scatter, is

diy
_ZA —K)\.I)t KI.B)L(T) (14)
dr
where r is distance along the beam; K, is the
absorption coefficient or reciprocal mean free path;
and I, ; is the intensity of black-body radiation at the

local temperature T.

Solution of these equations is very difficult
except for the case of unidirectional flux where the
loci of constant values of I and IB are planes of
constant r cos & and where dw is in consequence
expressible in 8fdw = 27 d(cos 8)); and even for
that simplest of geometries most authors have
restricted their treatment to “gray” gases. For the
many problems of the engineer not falling into the
few cases manageable with the above equations,

— problems of odd furnace shapes, of temperature
fields influenced by flow, of simultaneous axial and
radial temperature gradients, of jet mixing, — there
.appears to be no alternative to zoning the system.
One thereby replaces the integro-differential equation
plus complex boundary conditions by a system of as
many simultaneous linear equations governing
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radiation as there are gray surface zones and
scattering gas zones, solves for a set of intermediate
coefficients which are then fed into a system of as
many simultaneous and generally non-linear total-
energy balances as there are unknown zone tempera-
tures. A description of the method, without
derivations, follows:

1. Describe the gas total emissivity and
absorptivity empirically as though the gas were a
mixture of a few gray gases, in the manner described
under restriction 2 in the section above on Inter-
action.

iy : K L
€G=§1:ﬂ':(TG)(1'~€ n} n 3

g, = S, (T,)(1 - e‘KnL)

Experience indicates n need not exceed 3; 2 often
suffices. - :

2. Zone the system into the coarsest zoning
consistent with the accuracy desired, in a manner
dictated by the geometry of the problem and by
prior knowledge, or guess, of where steep gradients
in the temperature field necessitate fine-scale
zoning,.

3. Evaluate direct-interchange areas S5, 5z, Zg,
for each of the n values of KB.

4. Set up and solve system of simultaneous linear
equations representing radiation balances on'all zones,
using interchange areas based on absorption coef-
ficient K.

Surface zone i:

A.“: E

A .
255 -8. W+2gs W’ :
i li'pl ! Pi

4

~

Volume zone i:
4KV, 1-5
LA W= 4KV, — E
b ) )

Solve for each W and W (Definitions of . and
,W appear in nomenclature table, also 5;;
5. Evaluate total-interchange areas.

nglW+E(ng - 3

55 = A& (W,-5,¢)

5 -, 2=

;-G}=4KV; ; (F'-8,(1-8)
— A 1-%

5,G, = _p_ = 4KV, ——(F)

6. Repeat steps 4 and 5 n times, once with each
value of K needed to describe the gas.

7. Estimate the temperature field, and for it
evaluate.

a_(T.) for each surface zone i and each », and

ar: (TJfor each gas zone i and each n.



8. Evaluate the directed total-interchange areas

55,-Sle, (TGS, 5 55 -2la(TNES),
o 0

5.G=2(a, (T)VS,G), 5 56 =3l (T)(5G),

n —— n R
GG = 3o, ([)V(GG), 5 G- Ela,(T))GE),

9, Formulate the total energy balances on those
zones of nnknown temperature.

Balance on 4;: —
(Reception or gen-
eration of energy by
A;‘ due to non-
radiative mechanis
dependent on T;and
on those T s con-
tiguous to T) -

(stovage rate or
withdrawal rate)

=0

This gives a system of szmultaneous equations,
generally non-linear, of total number unrelated to the
number encountered in step 4. If the temperature field
differs from that assumed in step 7, repeat from 7 on.
Note that steps through 6 preduce a complete
description of the radiating characteristics of the
system. Studies of the effects of changes in flow
rate or flow pattern, feed stream preheat, temperature
distribution of the controlled part of the walls, or-
any factor not affecting the system shape or size,
wall emissivity, or gas composition, — all these

" studies are made by changes from step 7 on. But the
chore of going from step 1 through 6 indicates the
need for restraint in choosing the number of zones
and the n for the gas!

The derivation of the above steps, together with -
the discussion of their validity, has been presented
elsewhere [29]. A formulation of energy transfer
from gases with temperature gradients in terms of
the basic temperature — dependent parameters
governing gas emission has been given by Penner
[22]. In comparison with the method summarized
here, the latter formulation is more rigorous in its
allowance for property variations along the direct
radiation path, but less general in that it does
include radiative transport from source to sink via
indirect paths involving wall reflection or gas
scatter. Moreover, the complicated form of the
eéquations, the difficulty of applying them to
itregular shaped enclosures such as furnaces, and
the uncertainty as to the corrett values of the
parameters describing the fine structure of the
spectra of molecules of interest probably make
unjustifiable the use, in most engineering calcu-
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lations, of a more rigorous description of the
eifects of non-grayness of gases and their tempe-

rature response than that outlined above.
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